Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1365995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463560

RESUMEN

Introduction: Remorins (REMs) are plant-specific membrane-associated proteins that play important roles in plant-pathogen interactions and environmental adaptations. Group I REMs are extensively involved in virus infection. However, little is known about the REM gene family in sugarcane (Saccharum spp. hyrid), the most important sugar and energy crop around world. Methods: Comparative genomics were employed to analyze the REM gene family in Saccharum spontaneum. Transcriptomics or RT-qPCR were used to analyze their expression files in different development stages or tissues under different treatments. Yeast two hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays were applied to investigate the protein interaction. Results: In this study, 65 REMs were identified from Saccharum spontaneum genome and classified into six groups based on phylogenetic tree analysis. These REMs contain multiple cis-elements associated with growth, development, hormone and stress response. Expression profiling revealed that among different SsREMs with variable expression levels in different developmental stages or different tissues. A pair of alleles, ScREM1.5e-1/-2, were isolated from the sugarcane cultivar ROC22. ScREM1.5e-1/-2 were highly expressed in leaves, with the former expressed at significantly higher levels than the latter. Their expression was induced by treatment with H2O2, ABA, ethylene, brassinosteroid, SA or MeJA, and varied upon Sugarcane mosaic virus (SCMV) infection. ScREM1.5e-1 was localized to the plasma membrane (PM), while ScREM1.5e-2 was localized to the cytoplasm or nucleus. ScREM1.5e-1/-2 can self-interact and interact with each other, and interact with VPgs from SCMV, Sorghum mosaic virus, or Sugarcane streak mosaic virus. The interactions with VPgs relocated ScREM1.5e-1 from the PM to the cytoplasm. Discussion: These results reveal the origin, distribution and evolution of the REM gene family in sugarcane and may shed light on engineering sugarcane resistance against sugarcane mosaic pathogens.

2.
Front Plant Sci ; 14: 1101665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794222

RESUMEN

Introduction: Plant-specific Class III peroxidases (PRXs) play a crucial role in lignification, cell elongation, seed germination, and biotic and abiotic stresses. Methods: The class III peroxidase gene family in sugarcane were identified by bioinformatics methods and realtime fluorescence quantitative PCR. Results: Eighty-two PRX proteins were characterized with a conserved PRX domain as members of the class III PRX gene family in R570 STP. The ShPRX family genes were divided into six groups by the phylogenetic analysis of sugarcane, Saccharum spontaneum, sorghum, rice, and Arabidopsis thaliana. The analysis of promoter cis-acting elements revealed that most ShPRX family genes contained cis-acting regulatory elements involved in ABA, MeJA, light responsiveness, anaerobic induction, and drought inducibility. An evolutionary analysis indicated that ShPRXs was formed after Poaceae and Bromeliaceae diverged, and tandem duplication events played a critical role in the expansion of ShPRX genes of sugarcane. Purifying selection maintained the function of ShPRX proteins. SsPRX genes were differentially expressed in stems and leaves at different growth stages in S. spontaneum. However, ShPRX genes were differentially expressed in the SCMV-inoculated sugarcane plants. A qRT-PCR analysis showed that SCMV, Cd, and salt could specifically induce the expression of PRX genes of sugarcane. Discussion: These results help elucidate the structure, evolution, and functions of the class III PRX gene family in sugarcane and provide ideas for the phytoremediation of Cd-contaminated soil and breeding new sugarcane varieties resistant to sugarcane mosaic disease, salt, and Cd stresses.

3.
Viruses ; 13(3)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809985

RESUMEN

Eukaryotic translation initiation factor 4E (eIF4E) plays a key role in the infection of potyviruses in susceptible plants by interacting with viral genome-linked protein (VPg). Sugarcane (Saccharum spp.) production is threatened by mosaic disease caused by Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Sugarcane streak mosaic virus (SCSMV). In this study, two eIF4Es and their isoform eIF(iso)4E and 4E-binding protein coding genes were cloned from sugarcane cultivar ROC22 and designated SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP, respectively. Real-time quantitative PCR analysis showed different expression profiles of these four genes upon SCMV challenge. A subcellular localization assay showed that SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP were distributed in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that SceIF4Ea/b and SceIF(iso)4E were selectively employed by different sugarcane mosaic pathogens, i.e., SCMV-VPg interacted with SceIF4Ea/b and SceIF(iso)4E, SrMV-VPg interacted with both SceIF4Eb and SceIF(iso)4E, and SCSMV-VPg interacted only with SceIF(iso)4E. Intriguingly, the BiFC assays, but not the Y2H assays, showed that ScnCBP interacted with the VPgs of SCMV, SrMV, and SCSMV. Competitive interaction assays showed that SCMV-VPg, SrMV-VPg, and SCMV-VPg did not compete with each other to interact with SceIF(iso)4E, and SceIF(iso)4E competed with SceIF4Eb to interact with SrMV-VPg but not SCMV-VPg. This study sheds light on the molecular mechanism of sugarcane mosaic pathogen infection of sugarcane plants and benefits sugarcane breeding against the sugarcane mosaic disease.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/metabolismo , Proteínas de Plantas/metabolismo , Unión Proteica , Proteínas Virales/metabolismo
4.
PLoS One ; 13(5): e0196071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746499

RESUMEN

Development of easily defoliating sugarcane varieties is urgently needed to facilitate efficient mechanical harvesting, reduce production costs, and increase sugar yield in China. In order to quantify the defoliation characteristics of sugarcane, we investigated eight traits in two field experiments with a range of sugarcane varieties at maturity. The length (LSR) and angle (ASR) of the sheath ruptured from the stalk, defoliation force (DF), and self-defoliation (SD) were the traits with the greatest contribution to the quantitative assessment of sugarcane defoliation based on a principal component analysis, which accounted for more than 75% of the cumulative variability. A small set of traits, namely SD, ASR, and DF measured at the 10th leaf were selected as predictors. Using these predictors, 37 out of 38 sugarcane cultivars were correctly classified into three groups (easy, difficult and intermediate in terms of ease of defoliation) that had been clustered based on six traits. These simplified measurements will be applied to screen new lines in the sugarcane breeding program in China.


Asunto(s)
Variación Genética , Fitomejoramiento , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo , Saccharum/genética , China , Marcadores Genéticos , Genotipo , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Saccharum/crecimiento & desarrollo
5.
Sci Rep ; 8(1): 1683, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374206

RESUMEN

Sugarcane (Saccharum officinarum L.) is an important crop for sugar production and bioenergy worldwide. In this study, we performed transcriptome sequencing for six contrasting sugarcane genotypes involved in leaf abscission, tolerance to pokkah boeng disease and drought stress. More than 465 million high-quality reads were generated, which were de novo assembled into 93,115 unigenes. Based on a similarity search, 43,526 (46.74%) unigenes were annotated against at least one of the public databases. Functional classification analyses showed that these unigenes are involved in a wide range of metabolic pathways. Comparative transcriptome analysis revealed that many unigenes involved in response to abscisic acid and ethylene were up-regulated in the easy leaf abscission genotype, and unigenes associated with response to jasmonic acid and salicylic acid were up-regulated in response to the pokkah boeng disease in the tolerance genotype. Moreover, unigenes related to peroxidase, antioxidant activity and signal transduction were up-regulated in response to drought stress in the tolerant genotype. Finally, we identified a number of putative markers, including 8,630 simple sequence repeats (SSRs) and 442,152 single-nucleotide polymorphisms (SNPs). Our data will be important resources for future gene discovery, molecular marker development, and genome studies in sugarcane.


Asunto(s)
Marcadores Genéticos , Genotipo , Saccharum/clasificación , Saccharum/fisiología , Estrés Fisiológico , Sequías , Enfermedades de las Plantas , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...